Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability.

Identifieur interne : 000C76 ( Main/Exploration ); précédent : 000C75; suivant : 000C77

Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability.

Auteurs : Mark D. Coleman [États-Unis] ; Doug P. Aubrey [États-Unis]

Source :

RBID : pubmed:29660101

Descripteurs français

English descriptors

Abstract

Forest productivity depends on resource acquisition by ephemeral roots and leaves. A combination of intrinsic and environmental factors influences ephemeral organs; however, difficulties in studying belowground organs impede mechanistic understanding of fine-root production and turnover. To quantify factors controlling fine-root dynamics, we grew a deciduous hardwood (Populus deltoides Bartr.) and an evergreen conifer (Pinus taeda L.) with distinct soil moisture and nutrient availability treatments. We monitored fine-root dynamics with minirhizotrons for 6 years during early stand development and expressed results on a root length, biomass and mortality-risk basis. Stand development and other intrinsic factors consistently influenced both species in the same direction and by similar magnitude. Live-root length increased to a peak during establishment and slowly declined after roots of neighboring trees overlapped. Root longevity was highest during establishment and decreased thereafter. Root longevity consistently increased with depth of appearance and initial root diameter. Season of appearance affected root longevity in the following order: spring > summer > fall > winter. The influence of soil resource availability on fine-root dynamics was inconsistent between species, and ranked below that of rooting depth, initial diameter, stand development and phenology. Fine-root biomass either increased or was unaffected by greater resource availability. Fine-root production and live root length decreased with irrigation for both species, and increased with fertilization only for poplar. Fine-root mortality risk both increased and decreased depending on species and amendment treatment. Differing responses to soil moisture and nutrient availability between species suggests we should carefully evaluate generalizations about the response of fine-root dynamics to resource availability. While attempting to describe and explain carbon allocation to fine-root production and turnover, modelers and physiologists should first consider consistent patterns of allocation caused by different depth, diameter, stand development, phenology and species before considering allocation due to soil resource availability.

DOI: 10.1093/treephys/tpy033
PubMed: 29660101


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability.</title>
<author>
<name sortKey="Coleman, Mark D" sort="Coleman, Mark D" uniqKey="Coleman M" first="Mark D" last="Coleman">Mark D. Coleman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest, Rangeland and Fire Sciences, 875 Perimeter Dr., MS 1133, University of Idaho, Moscow, ID, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest, Rangeland and Fire Sciences, 875 Perimeter Dr., MS 1133, University of Idaho, Moscow, ID</wicri:regionArea>
<placeName>
<region type="state">Idaho</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aubrey, Doug P" sort="Aubrey, Doug P" uniqKey="Aubrey D" first="Doug P" last="Aubrey">Doug P. Aubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia's Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia's Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29660101</idno>
<idno type="pmid">29660101</idno>
<idno type="doi">10.1093/treephys/tpy033</idno>
<idno type="wicri:Area/Main/Corpus">000E82</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E82</idno>
<idno type="wicri:Area/Main/Curation">000E82</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E82</idno>
<idno type="wicri:Area/Main/Exploration">000E82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability.</title>
<author>
<name sortKey="Coleman, Mark D" sort="Coleman, Mark D" uniqKey="Coleman M" first="Mark D" last="Coleman">Mark D. Coleman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest, Rangeland and Fire Sciences, 875 Perimeter Dr., MS 1133, University of Idaho, Moscow, ID, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest, Rangeland and Fire Sciences, 875 Perimeter Dr., MS 1133, University of Idaho, Moscow, ID</wicri:regionArea>
<placeName>
<region type="state">Idaho</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aubrey, Doug P" sort="Aubrey, Doug P" uniqKey="Aubrey D" first="Doug P" last="Aubrey">Doug P. Aubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia's Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia's Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Forestry (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Groundwater (MeSH)</term>
<term>Nutrients (MeSH)</term>
<term>Pinus taeda (growth & development)</term>
<term>Plant Roots (physiology)</term>
<term>Populus (growth & development)</term>
<term>Soil (chemistry)</term>
<term>Trees (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Forêts (MeSH)</term>
<term>Nappe phréatique (MeSH)</term>
<term>Nutriments (MeSH)</term>
<term>Pinus taeda (croissance et développement)</term>
<term>Populus (croissance et développement)</term>
<term>Racines de plante (physiologie)</term>
<term>Science forêt (MeSH)</term>
<term>Sol (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Pinus taeda</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Pinus taeda</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Forestry</term>
<term>Forests</term>
<term>Groundwater</term>
<term>Nutrients</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Forêts</term>
<term>Nappe phréatique</term>
<term>Nutriments</term>
<term>Science forêt</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Forest productivity depends on resource acquisition by ephemeral roots and leaves. A combination of intrinsic and environmental factors influences ephemeral organs; however, difficulties in studying belowground organs impede mechanistic understanding of fine-root production and turnover. To quantify factors controlling fine-root dynamics, we grew a deciduous hardwood (Populus deltoides Bartr.) and an evergreen conifer (Pinus taeda L.) with distinct soil moisture and nutrient availability treatments. We monitored fine-root dynamics with minirhizotrons for 6 years during early stand development and expressed results on a root length, biomass and mortality-risk basis. Stand development and other intrinsic factors consistently influenced both species in the same direction and by similar magnitude. Live-root length increased to a peak during establishment and slowly declined after roots of neighboring trees overlapped. Root longevity was highest during establishment and decreased thereafter. Root longevity consistently increased with depth of appearance and initial root diameter. Season of appearance affected root longevity in the following order: spring > summer > fall > winter. The influence of soil resource availability on fine-root dynamics was inconsistent between species, and ranked below that of rooting depth, initial diameter, stand development and phenology. Fine-root biomass either increased or was unaffected by greater resource availability. Fine-root production and live root length decreased with irrigation for both species, and increased with fertilization only for poplar. Fine-root mortality risk both increased and decreased depending on species and amendment treatment. Differing responses to soil moisture and nutrient availability between species suggests we should carefully evaluate generalizations about the response of fine-root dynamics to resource availability. While attempting to describe and explain carbon allocation to fine-root production and turnover, modelers and physiologists should first consider consistent patterns of allocation caused by different depth, diameter, stand development, phenology and species before considering allocation due to soil resource availability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29660101</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability.</ArticleTitle>
<Pagination>
<MedlinePgn>1805-1819</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpy033</ELocationID>
<Abstract>
<AbstractText>Forest productivity depends on resource acquisition by ephemeral roots and leaves. A combination of intrinsic and environmental factors influences ephemeral organs; however, difficulties in studying belowground organs impede mechanistic understanding of fine-root production and turnover. To quantify factors controlling fine-root dynamics, we grew a deciduous hardwood (Populus deltoides Bartr.) and an evergreen conifer (Pinus taeda L.) with distinct soil moisture and nutrient availability treatments. We monitored fine-root dynamics with minirhizotrons for 6 years during early stand development and expressed results on a root length, biomass and mortality-risk basis. Stand development and other intrinsic factors consistently influenced both species in the same direction and by similar magnitude. Live-root length increased to a peak during establishment and slowly declined after roots of neighboring trees overlapped. Root longevity was highest during establishment and decreased thereafter. Root longevity consistently increased with depth of appearance and initial root diameter. Season of appearance affected root longevity in the following order: spring > summer > fall > winter. The influence of soil resource availability on fine-root dynamics was inconsistent between species, and ranked below that of rooting depth, initial diameter, stand development and phenology. Fine-root biomass either increased or was unaffected by greater resource availability. Fine-root production and live root length decreased with irrigation for both species, and increased with fertilization only for poplar. Fine-root mortality risk both increased and decreased depending on species and amendment treatment. Differing responses to soil moisture and nutrient availability between species suggests we should carefully evaluate generalizations about the response of fine-root dynamics to resource availability. While attempting to describe and explain carbon allocation to fine-root production and turnover, modelers and physiologists should first consider consistent patterns of allocation caused by different depth, diameter, stand development, phenology and species before considering allocation due to soil resource availability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>Mark D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Forest, Rangeland and Fire Sciences, 875 Perimeter Dr., MS 1133, University of Idaho, Moscow, ID, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aubrey</LastName>
<ForeName>Doug P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>University of Georgia's Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="N">Forestry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060587" MajorTopicYN="N">Groundwater</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041603" MajorTopicYN="N">Pinus taeda</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29660101</ArticleId>
<ArticleId IdType="pii">4961436</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpy033</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
<li>Géorgie (États-Unis)</li>
<li>Idaho</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Idaho">
<name sortKey="Coleman, Mark D" sort="Coleman, Mark D" uniqKey="Coleman M" first="Mark D" last="Coleman">Mark D. Coleman</name>
</region>
<name sortKey="Aubrey, Doug P" sort="Aubrey, Doug P" uniqKey="Aubrey D" first="Doug P" last="Aubrey">Doug P. Aubrey</name>
<name sortKey="Aubrey, Doug P" sort="Aubrey, Doug P" uniqKey="Aubrey D" first="Doug P" last="Aubrey">Doug P. Aubrey</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29660101
   |texte=   Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29660101" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020